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Isomerization kinetics is studied on a one-dimensional ideal gas model with 
deterministic transitions. The concentrations of species are found to satisfy the 
phenomenological rate laws appropriate for diffusion-controlled kinetics, and 
the various correlations are determined. In the long-time regime, higher correla- 
tions present long tails reflecting a strongly non-Markovian evolution. 
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1. I N T R O D U C T I O N  

The  jus t i f ica t ion  of kinet ic  equat ions  for  systems involving chemica l  reac- 
t ions is a f u n d a m e n t a l  p rob l em of s tat is t ical  mechanics .  In  l iquid a n d  in gas 
phases,  most  of the app roaches  p r o p o s e d  so far  involve phenomeno log ica l  
e lements :  the Bo l t zmann  equa t ion  or  its general izat ions,  mas te r  equat ions,  
F o k k e r - P l a n c k  or  Langevin  s tochast ic  equat ions ,  and  Smoluchowski  equa-  
t ions are  the mos t  fami l ia r  examples  (see Refs. 8 a n d  11 for  recent  surveys).  
A c o m m o n  character is t ic  of all these Markov ian  descr ip t ions  is the intro-  
duc t ion  of a reac t ion  p robab i l i t y  when coll is ions occur  be tween  par t ic les ;  
under  app rop r i a t e  condi t ions  one then ob ta ins  a mac roscop ic  rate  law 
which agrees with the requi rements  imposed  on  the system by the rmody-  
namics .  
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Most of these theories remain poorly justified from first principles. As 
a matter of fact, the problem here is twofold. First, one has to face the 
fundamental question of how a Hamiltonian or more generally a conserva- 
tive flow can reduce to a Markovian process. And second one has to 
incorporate into the flow dynamical processes capable of describing chemi- 
cal transformations. 

The first question, which constitutes the main subject of nonequilib- 
rium statistical mechanics, (4"8'9'16) has recently been reconsidered in depth 
for abstract dynamical systems by Prigogine, Misra, and Courbage (12) and, 
from a different standpoint, by Lebowitz and Spohn (see Ref. 14 for a 
recent survey). Our principal goal in the present work is to focus on the 
second problem, postponing to a later communication the discussion of 
connections with these theories. Specifically, we consider a simple reactive 
system described by a deterministic mechanical model. This model is 
reversible, and it so happens that the chemical evolution occurs in a state of 
thermal equilibrium. In this respect, our procedure can be appropriately 
referred to as "analytical molecular dynamics." 

In Section 2 we define the model and calculate explicitly its micro- 
scopic properties. The deterministic dynamics is that of freely moving 
particles carrying a color r/k changing at each encounter (there are no 
collisions). Such a crude approach to kinetic theory has provided useful 
examples, from Kac' lattice ring (2'3'7) to models for one-dimensional diffu- 
sion in gas phase. (w) 

Given the thermal equilibrium state for the particle velocities and 
positions, we determine in Section 3 the evolution of particle colors. The 
number M of the "test" particles involved is finite, but arbitrary; the 
moment (r/k) of the family under consideration is rather sensitive to the 
prescribed state {xk,v~) of its particles at initial time, but the general 
behavior (found by averaging also over the test particles' state) is a slow 
decay to the equilibrium value 0. 

The distribution of populations in the color classes (N+,N_)  can be 
deduced from the moments (r/k). They are shown in Section 4 to decay to 
their binomial equilibrium, but in a manifestly non-Markovian way. An 
exception to this is the simple equation found for the one-particle state, 
which turns out to have good decay properties. 

Section 5 is devoted to the macroscopic (phenomenological) analog of 
our dynamical model, and to the comparison with the one-particle color 
distribution and with the average populations. The final section is devoted 
to conclusions and prospective remarks. 

Appendices A, B, C contain detailed calculations of the moments' 
evolution. 
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2. THE MICROSCOPIC MODEL 
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2.1. The Deterministic Dynamics 
t Consider N noninteracting point particles on the line, with positions x k 

and velocities vk, and with equal masses m. Each of them carries a color 
7/~ ~ I =  { -  1, 1}; we call - 1 white (A) and + 1 black (B). We assume 
that each time two particles meet, their colors change. In other words, the 
history of the variable r/ simply keeps track of the number of encounters. 

The dynamical equations of evolution are 

x ; =  ~~ + v~t, v / , =  v~ 

where 

( 2 . l a )  

rl/~ = rbsksko o , (2.1b) 

N 

s~ := l-I' sgn(x~ - xs (2.2) 
k ' = l  

The prime indicates that k' 4 = k. The color variable ~/k, expressing the only 
"coupling" between particles, is d r i v e n  by the mechanical variables (x, v). 
For definiteness, we shall assume that for positive times, ~/k is a left- 
continuous function of time; this amounts to modifying the sign function in 
(2.2) as 

t t o(x/~-x~,)-- +1, if x~>x  k, 

l g o ( x [ -  x,/,)= -1  if x k < x~, 

o ( x ~ - x h ) =  + l  if x/,=xh 

o ( x ~ - x ~ , ) = - I  if x~=x~ ,  

(2.3a) 

and v k ~< v k, 
(2.3b) 

and v~ > v k, 

The case (x~ = xk,, v k = vk, ) may be neglected since it has measure zero in 
the equilibrium ensemble. 

The above specification is necessary to determine the (conservative) 
flow underlying (2.1): 

" t  

xk = vk (2.4a) 

, 5 [ = 0  

N 

~,~ = - 2  ~ ' ( v ~  - v~, )8(~,~  - x,~,)~,~ - ~  f 2 . 4 b )  
k ' = l  

N 

= 2 2 ' ( v ~  ~,)8(x/~ - " ,+o - x k , )  71~ (2.4c) 
k ' = l  
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The evolution equations (2.1) are obviously invariant under time 
reversal. So are the differential equations (2.4), but the definition of ~/~ at 
the very time of an encounter is not: the left-continuity assumption 
transforms by time reversal into a right-continuity requirement as can be 
seen from the closed form of (2.3): 

o (x  k - xk, ) = sgn(x k - x~,) - 2g (x  k - x~,)sgn(v~ - vk,)o o (2.5) 

where o 0 := sgn t and g denotes the Kronecker function. Since collisions are 
instantaneous, the difference between left- and right-continuity is irrelevant 
to the evaluation of averages (~/~ at any time t > 0; but the initial 
time t -- 0 plays a central role in (2.5), which we shall analyze now. 

2 . 2 .  

may be written as (13) 

Otq = iLq 

q '= eiL'q ~ 

where L is the Liouville operator. 
For the ideal gas, 

N 
L 0 = - i  ~ v k 0 

k=l 3xk 

whereas for our model, 

Liouville Formalism and Time Reversal 

In a conservative dynamical system, the evolution of any variable q t 

(2.6) 

(2.7) 

(2.Sa) 

N( 0) L c =  - i ~ =  2~ + / / k - -  (2.8b) 
1 OgIk 

These expressions can be used to express the time evolution of any 
correlation function (qOqt> as a formal series in time: 

(it)" 
(qOq,) = ~ --nT-. (q~176 (2.9) 

n = 0  

where all coefficients (q~176 are evaluated in the initial statistical ensem- 
ble. In the ideal gas, the observables are functions of (x, v), and the velocity 
distribution is stationary (chosen initially to be Maxwellian). For any 
function q of the positions xk, we thus have 

N ~ 3 0> 
�9 0 q (q~176 = - '  ~., (Vk>h( q ~ (2.10) 
k = l  \ v k rp 

where h is the Maxwellian and q0 is the spatial distribution. Because of the 
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parity of the Maxwellian with respect to velocity reversal, this first coeffi- 
cient vanishes (as does any odd power of L). There remains 

t2)  n 
<qOq,> = 

(-  
.=0 (2n)-----V (q~176 (2.11) 

which is an even function of time. The equivalence between time reversal 
and velocity reversal operators for the ideal gas, and the parity of the initial 
state thus imply parity of the correlation functions under time reversal. For 
analytic functions, this also means that the short-time deviation from 
(qOqO) is quadratic in t--as it can be verified in many examples of gas 
dynamics3 s,6) 

In our model, the continuity convention (2.4) renders the prescriptions 
for time reversal different from a simple velocity reversal. Specifically, if we 
consider the color as a function of positions (as q), we simply apply the 
ideal gas Liouvillian to T/k (k = 1 for simplicity): 

N N 

v s , iLs ,  = s, X k-~x k I-I o ( x ,  - xk. ) (2.12) 
k = l  k ' = 2  

N N 

= - 2 s ,  ~ ,  ( v  k - V l ) 6 ( x  1 - xk)  1 - I ' o ( x ,  - x , )  
k = 2  1=2  

N 

= - 2  ~ (v  k - v , ) 6 ( x  k -  x t ) o ( x  , - xk) (2.13) 
k = 2  

N 

= -200  ~ Iv~ - vlld(x k - Xl) (2.14) 
k = 2  

where use was made of (2.5) to resolve the ambiguity arising from the 
product in (2.13). The same conclusion can also be reached by using the 
full operator L c and considering the ~/k's as independent variables. The 
violation of velocity-reversal parity allows the coefficient (~/~176 to be 
nonzero, but the sign factor restores the parity under time reversal at initial 
t ime: 

N 
(~0~,) _- (~0~0) _ 21tl ~ ( Ivk-  v~lS(xk - x , ) )  + . . .  (2.15) 

k = 2  

A similar expansion in It[ (rather than in t 2) describes the initial decay 
in correlation functions for hard spheres{13); it also follows from the 
instantaneous jumps of velocity due to collisions, and it can also be derived 
from a pseud0-Liouville operator like (2.8b). Though hard-sphere dynamics 
are not solved exactly, the Enskog approximation and computer experi- 
ments yield enough evidence for this steep behavior close to t = 0. Our 
model can also be thought as still another illustration of pseudo-Liouville 
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formalism but the possibility to find an exact solution dispenses us with the 
need to apply this formalism. 

2.3. The Role of Initial Conditions 

For most (mechanical) models, time reversal and velocity reversal 
really are equivalent (TP invariance!), so that asymmetric evolution in time, 
and eventually irreversible behavior, can only be derived by violating some 
other Liouvillian premises. One possibility is to select asymmetric initial 
conditions, as in Lanford's derivation of the Boltzmann hierarchy (9) or in 
the time-operator formalism for K systems(~2); the simplest such prescrip- 
tion is to retain only those initial states in which the test particles have not 
interacted in the past. It should be pointed out, however, that in one 
dimension (as in the present model) the requirement for one (or more) test 
particle(s) to have never interacted with any other particle can only be 
satisfied on an ensemble of measure zero: it amounts to requiring that all 
particles to the left of a test particle k at initial time have velocities larger 
than v k (and the ones to the right, smaller)! 

3. EVOLUTION AT THE LEVEL OF PARTICLES 

Though the system is explicitly integrable, we cannot write the evolu- 
tion of the one-particle distribution f ( x , v , ~ l , t )  in closed form, for s k 
obviously depends on the position of all other particles. But if we assume 
initially a state of equilibrium for the mechanical variables, we are left with 
only f ( ~ l , t )  or f O l l . . .  ~IM, t )  for any M particles considered. A useful 
intermediate quantity will be the conditional distribution f ( ~  . . .  ~M, t [ x ~ ,  

v l  , ~ll ; �9 �9 �9 ; XM, VM, ~IM)" Since a discrete distribution f({ v/k), t) is completely 
determined by its moments (1-I~ek~k) for all k c [ 1 , M ] ,  we shall first 
determine the latter. 

3.1. The Specific Moments 

For a family k c [1, M] of particles, let 

= II  (3.1) 
k E k  

and the relevant sign function: 

sk = I-I I I  o ( x ,  - x , )  (3.2) 
k E k  i ~ k  

The particles i, whose colors are not specified here, are in complete 
(x, v) equilibrium. They thus play the role of a bath driving the colors of 
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the "test" particles (*/k) to equilibrium: 

0 0 _ O 0  t II ( 3 . 3 )  
i ~ k  

where for simplicity the velocity distribution 

m ~1/2 [ m y 2  ) 

h(v) = ( 2 , ~ k . r )  exp i 2 k . T  (3.4) 
/ 

is chosen to be the Maxwell-Boltzmann distribution at temperature T. The 
spatial distribution q~(x) is uniform since the particles are Poisson- 
distributed on the line: 

~(x)  = lim 1 L-~o~ ~ Z  X~-L,L~(X) (3.5) 

and Xa is the characteristic function of the subset A C ~. The convenient 
scaled variables: 

w =  2 k e r  } v (3.6a) 

= - -  Itl (3.6b) 

will directly incorporate the effect of temperature and the time-reversal 
parity discussed in Section 2.2. Since the bath particles have independent, 
identical distributions, 

Q/k)( 0 0 (3.7) = 

where 

B ( ( x  ~ ,v k ) , , )  = f .  kI~Ik sgn(x ~ - x~ ({x ~ - x ~ + vkt ) ,  t ) ~ ( x ~  ~ 

(3.8a) 

A ({ (k }, t) = ( I-I sgn(~k - vi t )h  (1)i) dDi (3.8b) 
�9 ) R k ~  k 

These integrals are performed in Appendix A. The second physical assump- 
tion is now the thermodynamic limit N ~ oc, L-~ oe: 

N _  lim N - M  (3.9) 
O -  L L---) ~ L 

which converts the binomial expression (3.7) into the exponential: 

(~/~/o) = e x p [ - o D ( ( x ~  ) , t ) l  (3.10) 

where the function D is given by (A12). Since this function does not 
depend on the background particles' distribution, the only role of their 
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large number is to allow for the thermodynamic limit (3.9) and to scale as 
the density in the exponent of (3.10). One can check that D > 0. 

For one (test) particle, the decay function D is linear in time 

D(x~ = rtt(w ) (3.11) 

with 

e-W 2 
= + (3.12) t~(w) = Werfxdx+ ~ werfw ~ -  _!_1 

The even function t~ is convex, with its minimum at w = 0: 

1 ( l + w  2 ~(w)--- ~ + . . . )  (3.13a) 

and it increases monotonically as w ~ ___ oe : 

e w2(-  1-~-+ 2 (3.13b) = Iwl + 

Since the decay of the one-particle state is just determined by its mean 
free path, this result is in no way surprising. The angular point at t = 0 
implied by (3.11) has been justified in Section 2.2. 

The Mth degree moment Q/~/o) also starts its decay exponentially, for 
I t l < <  ' o mmk~t[(x ~ -- xO)/(Vk -- Vt)l, the test particles are in uncorrelated parts 
of the "bath":  

M 
D o ( { Xk ,~Jk } , t )  ---- "1" E ~t(Wk) "]- ~ ( , / . 2 )  (Yl4a) 

k = l  

t 0 / t 0 \  e~(r 2) (~k~/k) = I-I (Yl4b) 
k@k 

but with increasing time they have an increasing chance to meet some of 
the same background particles, and the final decay is dominated by 

n({x~ =rn~ r + n ~  + ~ ( 1 )  (3.15) 

I + ( _ I ) M  M I _ ( _ I ) M  M 
D • -  2 k=,~" wksff + 2 k=l• tz(W~)S~ (3.16a) 

1 + ( _ 1 )  M M 1 _ ( _ 1 )  M M 
- x ,s ,  erf w k xk(Sk + S~) + E ~ ~ 2 E 0 0  

k=t 2 k=l 
M M 

- ~ s~176 Z s~)erfwt (3.16b) 
k = l  I = 1  
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sff = I-I sgn(wk - wk,) 
k '4-k  

If we decide to release all our test particles (at the same time) from the 
same point, in finite number M, the moments are always in this asymptotic 
regime, since Do ~ = 0 as one can check directly using Eq. (Yl6b). 

3.2. The Average Moments 

All moments decay exponentially as [tl---> or, but the damping rate 
depends upon the initial conditions on the test particles. Since all particles 
are distributed according to the equilibrium measure hcp dv dx, we have to 
superpose the decay laws (3.10) for all initial conditions; this will destroy 
the general exponential-like character of the decays. 

For one test particle, the above averaging amounts to a Laplace 
transform: 

with the substitution 

( ~1 t~ o) = fR e -.w~(w)h ( v ) dv (3.17) 

= f l  
/ ~ e - ~~ ( g) dg (3.1 S) 

g = 

derfw _ 2e -w2 
H ( g ) -  cl~(w) ~;~-erfw 

The divergence of H at g = 7r-]/2 as 

H (  I + x  ) _ 2 +:(1) (3.20) (~)1/2 

determines the long-time behavior of (~/'~/~ 

The asymptotically dominant contribution in Q10~t) comes from the slowly 
moving particles (those having the largest waiting times (pg)-l between 
collisions). On the contrary, the short-time evolution of (~~ is sensitive 

(3.19a) 

(3.19b) 
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mainly to the case of an intermediate test-particle velocity, implying fre- 
quent collisions: 

2 x (w)e - " ;  dw g H ( g ) = -~ -~g 

(3.22) 

<~0~,) = 1 - 0 ,  + G(02~ 2) 

The decay law (3.21) is not exactly exponential because of the thermal 
distribution of the particle velocity smoothing the decay (3.10) (compare 
with the more macroscopic interpretation of Section 5), but it exhibits a 
definite relaxation time of order 

1 [ 7rm ~/2 (3.23) tr = ~ 
2kBT ] 

for both positive and negative times [cf. (3.6)]. A striking result is the 
validity of such an exponential approximation even in the short:time limit, 
Eq. (3.22): 

(~1~ = (~1~ = e-~21~l/t~+ & t~ (3.24) 

implying nondifferentiable behavior at t = 0, in contrast with usual kinetic 
theory as discussed in Section 2.2. 

A similar evaluation is possible for higher moments. For M = 2, 
D ?  = Iw2 - w, l :  

fa2e-~ dv2= e~ ~-  ~r p--~ + & 

(3.25) 

so that the two-particle correlation has a long-time tail 

1 = [ m ]1/2 1 (3.26) 
<~2) ~p'c  ~ 27rksT ] oltl 

We show in Appendix B that higher moments behave the same way: their 
slow decay appropriately reflects the slowly increasing ( ~ t )  separation 
between the test particles. Their short-time behavior, on the other hand, 
directly follows from (3.14) as long as they are not released from the same 
initial position. 

The trivial character of the equation for xi and vi makes the spatial 
correlations quite irrelevant, and the evolution laws for the color lead to the 
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following factorization of the n-time functions: 

(~O(xO)~,,(x,)~,2(x2)) + ~(x  2 x ' -  x ~ 

n" = (n~'n '~'+') 
l = 0  

with complete ordering of the times t t. 

(3.27) 

(3.28) 

3.3. Periodic Boundary Conditions 

The absence of collisions enabling particles to forget their past motion 
makes the ideal gas very sensitive to boundary conditions. On a ring of 
length L (or in a box of size L/2), the particles encounter periodically, and 
the color evolution changes dramatically: 

N ~7(X k -- Xl ) 
gk = I-I' sgn sin (3.29) 

/=l L 

With this periodic operator, the one-particle moment exhibits a Gaussian 
decay (Appendix C): 

(~lo~t) ~ N! ( 2 ~2Ne-N~r02 -b ~ ( e  -(N+8)~r02) (3.30) 
(( N/2; )2 , 

with a scaled time 

0 = -~-L z (3.31) 

Here recollisions smooth out the effect of high velocities on the decay laws 
of the moments. Moreover, the time-reversal operation is here equivalent to 
velocity reversal, and the moments are entire functions of t 2 rather than 
of Itl. 

4. THE DISTRIBUTIONS OF COLORS AND POPULATIONS 

The moments (~k) (for all k C [1, M] N N) also determine the probabil- 
ity distribution 

f ( ~ / , = ' ,  . . . . .  ~M = 'M , t)  = 2 - M  ~ ( I~ ~i'i l (4.1) 
kcll,M] i \ ~ k  l 
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The asymptotic evaluations (Appendix B) imply the same slow decay for 
the probabilities 

f({~, },t) - 2 - M ~  1 + # (p -2 , -2 )  (4.2) 
p~- 

towards the microcanonical equilibrium state: 

@ k )  = o, V k  v~ r 
(4.3) 

f ( {~ i } , t )=2-M,  V(~i} E 1  M 

The number of test particles of each color is 

l + ~ k  M +  Y N+ = - ~  - ~ -  (4.4) 
- k = l  2 2 

where Y = ~ k -  It is distributed according to 

p(Y,t)= 
{~} 

= 2-McN- 2 ( - -  1)l'l( I I  'k I ' I ' , )  (4.5) 
k,I kEk lEI 

where {f~} ranges over I M, k over the subsets of [1,N+], and I over the 
subsets of [1 + N+,M]. Its moments are even easier to obtain: 

( Y )  = 2(N+ ) - M = Y(0)(~?[) (4.6a) 

( y 2 )  = 4 ( N 2 )  _ 4M<N+ > + M 2 = M + (7(0) 2 - M ) < ~ 2 )  (4.6b) 

and the equilibrium state is the binomial 

p ( y )  = 2- MC(MM + V)/2 (4.7) 

While the expected populations ( N + )  decay to equilibrium nearly expo- 
nentially, their variances only decay algebraically. Since analogous rela- 
tions can be shown for higher moments, we see that the odd part of P(Y) 
relaxes much faster than its even part. Such a decay is not compatible with 
a Markovian master equation. 

5. THE MACROSCOPIC THEORY 

The macroscopic analog of the dynamical system (2.1) is a mixture of 
two species A (or +)  and B (or - )  undergoing isomerization reactions: 

A + A ~ B + B  
(5.1) 

A + B . - ~ - B + A  

In the traditional phenomenological description, the motion of the particles 
between reactions would be described by diffusion. Let us introduce the 
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variables 

p = n+ + n_ (5.2a) 
n = n + , n_ (5.2b) 

The total density 0 satisfies the conservation equation: 

o,o + OxJ = 0 (5 .3)  

J being the associated current. We assume as in Section 3 that the 
"mechanical" variables are at equilibrium; hence 

P = PO, J = 0 (5.4) 

On the other hand, the color density n satisfies a phenomenological 
equation of the reaction-diffusion type: 

~,n = D a Z n -  2Qpn 

n(  + oo , t )  = 0 

n(x, o) = 8(x) 

(5.5) 

(5.6a) 

(5.6b) 

displaying, respectively, the diffusion coefficient D and reaction constant 
Q. The Green function for this system is 

n (x,  t) - Y( t )  _x2/4D t (5.7) 
(4~rDt)i/2 e 

with the global chemical population 

Y ( t )  = e -2e~' (5.8) 

d y = _ 2 p o t  (5.9a) 
dt 
Y(0) = 1 (5.9b) 

If our model is to bear some relevance to macroscopic chemical 
dynamics, it must at least exhibit the same asymptotic decay. Now, 
evaluating (5.7) in the long-time limit yields locally 

_ e -2Qp' + &[ x 2 
(47rDt)l/2 [1 I ~ )1 (5.10) 

n(x, t) 

which has the same form as (3.21) provided that we identify 

(ksT)  '/2 
Q =  ~ (5.1 la) 

D -  Q 2(-~ 0 (5.11b) 
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Despite our very crude microdynamics, the solution of the phenomeno- 
logical reaction-diffusion equation (5.5) is thus recovered as a limit of 
(3.21), if we focus on a spatial interval ]xl<<(Dt) I/2, The connection 
between D and Q implies that diffusion of species A (and B) is governed 
by the free motion of the particles between reactions: one could speak of 
reaction-controlled diffusion! 

In this context, it is worth noting that in the long-time limit the average 
color satisfies the equation [cf. (3.26)] 

= -2 o(n) (5.12) 

with a time-dependent "rate coefficient" 

( k .T  ) '/2 1 (5.13) 
= ~ m  + 8pt 

The finite limit of ~ as t o  oe corresponds to the dominance of the 
exponential in (3.21) and justifies the comparison with (5.8)-(5.11). 

Unfortunately, no similar equation can be written for f ( f l  �9 �9 �9 (M, t), 
owing to the nonfactorization of correlations. It is also well known (5) that 
no diffusion equation 

3 t f=  2 0 ~ f  (5.14) 

can be derived in general for the ideal gas; at best (with a Maxwellian 
velocity distribution) the "diffusion coefficient" _~ would be proportional 
to time! For these reasons, the diffusive behavior of ( 7 )  in our model is 
really induced by reactions. 

6. C O N C L U S I O N S  

The model studied in this paper is a very crude approximation of 
chemical reactions. The basic element that it tries to capture is that an 
uncorrelated sequence of encounters between the particles leads to a 
chemical equilibrium in a way very similar to classical phenomenology, 
without resorting to a stochastic approximation in the reaction scheme. 
Knowing the very unphysical behavior of the density 0 of the ideal gas, the 
proper decay of the one-particle function (7 )  in the long-time approxima- 
tion is rather satisfactory. The limitations of the free particle dynamics are 
nevertheless reflected by the poor decay of correlation functions, which do 
not factorize asymptotically into one-body functions and preclude the 
derivation of a closed-form master equation. In this sense of factorization, 
the basic elements for the evolution are not the particles, but the pairs, as is 
seen clearly from Eq. (3.28). 

In view of the realistic behavior of our model insofar as the macro- 
scopic evolution of concentrations is concerned, it is of interest to general- 
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ize it to the more common case of reactions involving an activation energy 
and to more complicated reaction kinetics. (~7) Besides, since the chemical 
variables behave better than the mechanical ones, a further improvement 
would come from a more realistic dynamics such as hard-sphere interac- 
tions in one or more dimensions. Differentiable potentials can also be 
envisaged if one resorts to a Bol tzmann-Grad limit. Such interactions lead 
to a stronger divergence of trajectories and so enhance the loss of correla- 
tions between pairs of particles. Yet in one dimension, the stringent 
ordering constraints (see Ref. 10) do not allow for a many-body reactive- 
diffusive behavior; Markovian reaction kinetics can, however, be derived in 
the hydrodynamic scaling limit. (18) 
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APPENDIX A: EVALUATION OF THE PARTICLES' MOMENTS 

The integrals (3.8) are expectation values of the "color factor" t 0 for S k S k 

one background particle with initial position x ~ and velocity v i given by the 
equilibrium distributions (3.4)-(3.5) 

M 
A (fl . . .  ( g ,  t) = [" l-I sgn((k + wi,r ) ~e-w? dwi ( a l )  

- ' ~ =  I W 

But: 

and 

lira A(~, . . .  ~M,t) = A(~] . . .  ( g - l , t )  (A2a) 
~M-~ OQ 

lim A (~,, t) = 1 (A2b) 

O~MA(i~, ~g,t ) 2 e x p ( - ~ ' - 2 )  M- l  
" ' "  = -- H sgn(~k -- ~g)  (A3) 

'r ~ -  k = l  

by direct differentiation of the sign functions. Straightforward integration 
of (A3) with the boundary condition (A2), and summation of the resulting 
series for A yields: 

with the error function complement erfc defined in Ref. la. 
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The spatial integral (3.8) can also be written as 

B({X~176176 (a5) 

with the initial sign factor: 
M M 

A({X--Xk~ E [1- -sgn(x- -x~  I-I'sgn(x,--Xk ~ (A6) 
/ = 1  k = l  

According to the definition (3.5) of the spatial distribution q~, B is given by 
the limit of 

1 f~z A(O)A(t)dx (A7) BL= ~ C 

M M M M 

= 1 - E s~176 - E s/C["(x/) + ~, E st~176 (A8) 
/ = 1  / = 1  / = l k = l  

where each term is found explicitly: 

f~ u (A9a) 1 L [ l _ s g n ( x _ u ) ] d x = l + _ s  
= L 

1 ( L e r f c X _ r d x  C~(r) = ~ J-L "r 

r 2--~( -- ierfc r )  = 1 + -~ + ierfc L ~'+ r L ~'- 

r ( ~ )  (A9b) = I + z + ~  T 

1r CL(u,r) = ~ L [ 1 -  sgn(x-  u)Jerfc x-"rdx'r 

= 2 + ~ + ~ u  + r ~" (ierfe L ~-+ r _ ierfc r-~. u ) 

= 2 + u + r  "l"ierfcr-U + O ( L )  (A9c) 

It seems appropriate to define 
M 

D,((Xk}) = 2 XkSk (AlOa) 
k = l  

l 
M M ~ierfc x~ -- xk D2( { x~ },~) = r E E s~ (A10b) 

k = l l = l  "r 

o ,,) ( -1 )~D, ( (x / } )  D2((Xk,Xk}, 'r)(All)  O((xk,vk) _ 0 , 

to obtain the dominant contribution to BL: 

B L = I - - s 1 7 6  
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A remarkable feature of the exponential factor D is its fundamental 
distinction between the even and odd cases of M; this property may be 
traced back to the summations of sign factors: 

M 1 - - ( - - l )  M 
E s,= (A13) 
/=1 2 

APPENDIX B: ASYMPTOTIC BEHAVIOR OF AVERAGE MOMENTS 

The moments 

M ~,~0\ 
IM(t) = k=ll'I k I,/ (B1) 

are the averages of , o o (~k~lk)((Xk,Vk},t) for an equilibrium distribution of 
initial conditions (x  ~ vk). To evaluate them from (3.17) in the limit t--> oe, 
we define the ordered subspace of Nn: 

Or(a") = ((wk) ~ a~ < / , ' ~  wk < w~,) (a2) 

It is well known that 

f0 f(0)  (B3) tlim tte -tD(x)f(x) dx = O'(O-----) 

where D is a positive function vanishing at x = 0, and f is continuous and 
bounded. 

For M = 2n (n E N) 

D~ = 2 w~s~ (B4) 
k = l  

is the symmetric function of (w k } equal to 

D ? *  = ~ (w2~ - w2~_,) (a5) 
k = l  

on the ordered subspace. This positive function is minimal when w2k 
= w2~-1, for which case 

~ = 0  D~' = O, Sk 
M (B6) 

D :  = E xOsO 
k = l  

Hence 

with 

I2n(t ) ~ Y2,G2n 

3'2. = fR2~ P~ x~176 II  cP( x~ dx~ (B7) 
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and 

G2. = (2n)!jo[" _ dw k r(R2,) exp (W2k W2k - 
k=l k=l ~-~ 

)1 = (2n)! (Ar(a2"-2)exp.,u -O'ck=l • (w2k - w2k- '  g ( w 2 " - ' )  

2 . -2  e x p ( -  w 2) 
x II dw~ (B8) 

k=l 

1 r ~  r ~  ' - 2w'w"  w "2) g (w)  = -- | | exp ( -o~-w '  - 2w '2 - dw"dw'  
'rrdwJO 

1 erfc(4~-w) + (B9) 
2(27r) l/20r 

Iterating this procedure,  we find 

(B10a) 

where 

G~'n = (2n)!;Or(~") exp - lW2k H ~ dWk-- n! 2 -n /2  (B10b) 

The  spatial integral ~/2n is spurious, as we shall not  release the test 
particles arbitrarily far from each other (if we did, 72n would vanish). We 
thus find 

~2.(0-( ~ (Bll) 

The  odd case M = 2n + 1 is evaluated similarly 

2n+ 1 
D ? =  ~ t~(wk)sy (BI2)  

k=l 
D ~  is min imum as w2z+l = 0 for some l, and 

w2k+l = W2k /> 0, for k > l 

W2k_~=W2k<0 ,  for k <  I 
(BI3)  
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on the ordered subspace. For these values 

D ~ _  1 
r 

sy  = 6kt (B14) 

Do ~ = 0 

so that the spatial integral over {x ~ disappears, but 

= s~(erf wk) -I (B15) 

diverges as w k -->0. We can, however, proceed by induction over n; for 
M > 5 (n > 2) 

where 

I 2n+l 1 
I2.+,(r)~--(2n + 1)~fOr( N2"+ ,)exp -Or k ~= 1 tt(wk)(-- 1)k 

2n +1 exp(-  w 2) 
• k=l ~- d w  k 

I 2n-- 1 ] 
= (2n + 1)!fo - w  ~ ~ ( w k ) ( 1 )  k r( R2"- b exp k = l  

( )2~_ i '  exp(-  w 2) 
pr dw k •  w2,_i, / ~- k=l ~- (B16a) 

= ~ ~exp /s(w') /,(w")] ~- 

(B16b) 

We first assume w > 0 and let 

y =,/Tw (B17) 

Then, expanding the function/~ by (3.13) up toy '4 andy  "2, we get 

dy, 
F(w,a) mfy exp[ y . 2  ~a  (y,4+ 6y.2)]erfc y'  2~-----a 

1 ( / 4  1 dy' 
"~s - 6-ad + 6y'2)1 ~-y '  2,/~- ~ (BlS) 
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In terms of the variable 
r = y'2a-1/2 (B19) 

F reduces to an exponential integral(lb): 

1 ;o~ e_rd r (B20) F(w, a) ~ ~ a  4/6 a 

_ 1 Et ( y4 
89rc~ _ ~ ) 

1 [lna + •(lny)] (B21) 
8wa 

The ~Y(ln y) term is integrable even when y---~0, and its contribution to 
(~k) may here be neglected. For negative values of y, we have 

13 <- Y = 12,-i < 0 (B22) 

and the parity of the integrand in (B16) is used to reverse all w's. Thus 

(2n + 1)! lnpr 12n_ 1 (B23) 
I2n+l- (2n - 1)I 8~-pr 

On the other hand, 

13 = ~@/2 exp[ - w2]-f ,?  exp[ -  I*(w,)pr - w~]dw, 

• s176 [-/~(w3)or - w~] dw 3 �9 dw (B24) 

3[ e x p ( - 0 r / ~ - ) f ? o o e x p [ y z l ( y 4 + 6 y 2 )  l 

2 oo • f ? e x p ( - y t ) d y l s  exp(-y2)dy3dy 

--~ 4or 311 f -~exp[  y 2 -  6-6~(y4+6y2)] (1-erf2y) dy 

3II ( 
2vr f~ e x p [  y 2 -  ~-a~ (y4+6y2)] 2e-y-----~ dy 

+s 6~(y4+6y2)]dy ) (B25) 

where c is an arbitrary (small) number. Since the second term is finite, we 
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find again 

311 
13 --- In pr 

4r Or (B26) 

( lnw )" 
12.+,(t) = (2n + I)! ~ 11( 0 

The recurrent factor here decays a little more slowly than for the even case 
(B1 1), but the exponential-like decay of I 1 implies a much faster decay for 
IZn+l than for any even moment I2,. 

APPENDIX C: MOMENTS ON THE RING 

The moment (~)(x ~ v, t) for one test particle on the ring is obtained as 
on the line by (3.7) 

( n ' )  = ,7 ~ ( c 1 )  

1 L  )A x~ X ,v,t)dx (C2) B(x~ = T s sgn(sin~r S~--~ ( -2-L 

A (4, v, t) = f sgn sin 2~r[~ + (~o - w')0]exp( - 7r~ '2) do~ 

s - ~r(co0 r)20 -2 ] ~-dr (C3) = 1 - 2  E '/2exp[ +~  + h +  
h ~ Z  

where 

(~rkBT) 1/2t =~/-~- ~L  sgnt (C4a) o= ~ T 

m )1/2 
~0= ~ v (C4b) 

The summation is simplified by means of Poisson's identity(IS): 

2 (  '/2 exp[-vrn20 2 2rrin(oaO+ 4+ r)]dr A(4,v,t)=l- J0 . ~  L + (c5) 

1 - ( - 1 )  n 
e x p ( -  ~rn20 2) sin 2~rn(~0 + 4) (C6) 

n @ Z o ~Y/  

1 - ( - 1 ) "  ]2 
B (x ~ v, t) = ~ e x p ( -  ~rn20 2) cos 2~rn&o (C7) 

n E Z o qTr/ 
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The average decay law of <,/> is thus: 

Q/>(t) = s  N- ,(X o, V, t)exp( -- ~r~ 2) doa 

= 2 e x p [ -  ~r0 2K(n) ] kiWI = 
(F/k) ~ ~ N -  I = 1 

with 

l -  ]2 (c8) 

N - 1  

/'/N ~ -- Z /'/k 
k=, (C9) 

N 
2 K(n) = E "k 

k = l  

The factor 1 -  ( - 1 ) "  actually restricts the summation to only the odd 
values of n k. Higher-order correlation functions are evaluated similarly: the 
r integral is then split into more complicated parts, but the Gaussian decay 
law will remain valid: 

B ( { x O , V k ) , t )  = 2 e x p ( - - ~ r n 2 0 2 ) b ( n , { x ~  ( C 1 0 )  
n@Z 

with a coefficient b given by two .integrals over [0, 1] or [0, L]. Since this 
coefficient need not vanish for even indices n, the dominant contribution 
Kk(n ) to the long-time decay may be slower than in the one-particle states, 
as we found on the line. 
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